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9-4 INTERRECIPROCITY; SENSITIVITY TO SOURCES;
HIGHER DERIVATIVES

Consider the network N and its adjoint N shown in Fig. 9-15. By Tellegen’s
theorem as given in Egs. (2-36) and (2-37), the circuits satisfy

Not Differential — Y (wr—JitW) =0 (9-81)
all
branches
so that Z (Dwdx —Jx u) = — Z (O —Jx Uk) (9-82)
source internal
branches branches

Let the hybrid internal branch relations of N be given by (9-56); then those of
N will be given by (9-70). The right-hand side of (9-82) can be written as

jng E ngB = j; Vg, T jgz b5 051 jBl o 9;2 sz (9'83)
When we use Egs. (9-57), (9-63) and (9-58), (9-64), the right-hand side becomes
¥7x — %"y = *"H"x — x"Hx (9-84)

The right-hand side of (9-84) is, by (9-68), identically zero. Hence for the
special case of a network and its adjoint (9-82) can be more specific:

Z (ke — Jxx) = — Z (Ddx — k) =0 (9-85)
source internal
branches branches More restrictive than Tellegen’s theorem

Two circuits which have this property are called interreciprocal.* Hence any
network N and its adjoint network N form an interreciprocal pair.

Next, the interreciprocity relation (9-85) will be used to calculate the hitherto
neglected effect of source variations on the output. Consider the special choice of
sources made for N in Fig. 9-15b. From (9-85),

k n k n
Z (i)ljl —j,e,) > Z (i’lit —j,U,) ¥ (bo g — o Uo) = Zjlel + Z Ui — v
1=1

=1 1=k+1 I=k+1
voltage current
sources sources
=0 (9-86)
k n
Hence vo=— Y e+ ). b (9-87)
=1 I=k+1

and the desired sensitivities of v, to the source values are simply

e .
: ; a—e, e | k=12 ...k
Diff. gains: 5 (9-88)
v
=0 =B l=k+1Lk+2...,n
0i,

Only N needs to be analyzed @ (Not N!) Superposition would require n analyses of N.
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Figure 9-15 (a) Multisource circuit; (b) its adjoint network.
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It should be noted that from the linearity of the circuit it follows directly that

/4,6,-F 2: l;lh (9'89)

1 I=k+1

M=

UO=
1

where the constant coefficients A4,, B, are the sensitivities. Clearly, they can be
obtained from the formulas:

1 if l=m
A,=19,¢ = : i, =0 for all
y m =005 0 i i, =0 for all |
Superposition: ¥ e (9-90)
if l=m
B, =v,, i 0 el e, =0 for all |

Thus, these sensitivities can be found at the cost of n single-source circuit
analyses without recourse to the adjoint network N. Since the adjoint network
approach requires only one analysis of the single-source circuit N, it is more
economical even for a two-source circuit; it becomes imperative for circuits with
many (n > 10) independent sources.

Example 9-9 Calculate the sensitivities of the output voltage v, in the circuit shown in
Fig. 9-16a to variations in the values of the independent sources e and i.
Drawing the adjoint network N with the aid of Table 9-1 and Fig. 9-15 gives the circuit
of Fig. 9-16b. This circuit can be analyzed by inspection to get
e (’71;0 ~ _Ovg

Uy — =100 V/A =0.1 V/mA —j1i=—=—=-05V/V
di de

It will be shown in Chap. 11 that optimization (automated design) may require the
calculation of the second partial derivatives of the output with respect to the circuit par-
ameters. These derivatives can also be found efficiently with the aid of the adjoint-network
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Figure 9-16 (a) Circuit with two independent sources; (b) its adjoint network.
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prapsaecll also be found. Used in circuit optimization, in Hessian matrix.
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